I Tawt I Taw a Combo Saw

Combination machines are often underrated, or overlooked when considering workshop machines.  If you have the space, then a machine dedicated to one task must be better than one trying to be all things to all people right?

It is the public gym vs infomercial war all over again, in some minds: don’t buy a machine that can only do one thing, buy this workout zone for home and get 99 functions in 1.  Sounds great, but we also know for these sales pitches, the resulting contraption is built cheap.  After all, you don’t get 1 for 10 easy payments of $99.95, but they will throw in a second one for free, and an exercise mat to boot.

If you have the workshop floor area, why would you consider a combo machine, when 2 or 3 individual machines, each dedicated to the one task must be better.

Well that is not always the case.

There are a number of reasons to consider a combo machine in the workshop.

1. Price

Overall, it will typically be a lot more expensive than one of the machines it is replacing, but add them all together, and the price starts becoming rather competitive.

2. Floor Space

Unless you own the Taj Mahal of sheds, we are all space-poor to one degree or another, and some machines can be combined to minimise their overall demand on space, especially where they can share common infeed and outfeed areas.

3. Increased Capacity

If you buy a jointer, a 6″ jointer is a reasonable price, an 8″ adds about 60% to the price, and a 12″ about 4x the price.

It means as a stand-alone machine, few will be able to justify a 10″ – 12″ jointer.  But if you get a combination jointer-thicknesser, a 10″ or 12″ capacity for the jointer is not uncommon.

It makes me really wonder why the stand-alone jointers of that size are so expensive?  You can buy a 15″ thicknesser for a fraction of the price of a 12″ jointer.

4. Access to machines you otherwise wouldn’t get

A combo machine like a jointer/thicknesser is just that, a couple of machines combined.  But what about the multi-machine combinations?

Minimax-C26-Genius

The MiniMax C26 for example combines a 10″ tablesaw (with sliding table), a 10″ jointer, 10″ thicknesser, a spindle moulder, and optionally a mortiser to boot.

You may be looking for the typical combo of the saw, jointer and thicknesser, which means the spindle moulder and mortiser are bonuses – you may not have planned on buying them otherwise, but who’d say no if they are included?

8556475411_a08c5d1d84_z

So let’s look closer at the C26 particularly, as it is one that I saw at my recent road trip to Gabbett Machinery.

1. Price

C26 Stand-alone
10″ Saw w sliding table $5400 $1900
10″ Jointer $1400 (8″)
10″ Thicknesser $1500 (15″)
$2000 (10″ combo)
Spindle Moulder $1300
Mortiser +$500? $860

Ignoring the mortiser, as that price is a total guess, the C26 at $5400 compares very closely to $5200 of the stand alone machines (if you still consider the combo jointer/thicknesser), or $6100 of totally independent machines.  There are

2. Floor Space

C26 Stand-alone
10″ Saw w sliding table 5.2m2 4.9m2
10″ Jointer 1.3m2
10″ Thicknesser 0.9m2
 (or 10″ combo) 0.8m2
Spindle Moulder 0.5m2
Mortiser 0.7m2

C26 footprint 5.2m2 (that includes the area of the sliding table with the arm out at an operational position).

Standalone machines 8.3m2

And this is just the foot print of the machines themselves, not including the typical amount of space you’d leave around each machine for access, or the infeed and outfeed areas, which is significant!

There is no question about it – a combo machine saves a fortune in shed space.

The increased capacity is primarily around the jointer – getting a 10″ jointer or larger is exceptionally expensive stand alone, but not so much so when part of a combination.  The 6″ jointer I have has always been quite a limitation for me – couldn’t justify getting a larger one, but have often found it to be a limitation.

As to machines you wouldn’t otherwise have, that is a personal issue.  For me, I don’t have a mortiser or spindle moulder, so that would be the win from having a combo (not to mention the increased jointer capacity). The other thing I don’t have is the sliding table, which can prove exceptionally useful if you are trying to do a lot of crosscutting on the tablesaw.

So unlike cheap exercise equipment sold on late-night TV, a serious combo workshop machine is something well worth considering when looking at setting up a workshop.  They are not cheap, but as shown, it is comparable to the machines they replace, and they save a fortune in workshop real estate.  As I am discovering with the current shed build, workshop floorspace is worth a small fortune, and being able to save many multiple square metres is worth a lot, much more than the cost of the machine.

The Minimax C26 in particular was from Gabbett Machinery.

 

Workspace

Although I put up the small storage shed last weekend, I really didn’t get a chance to actually make use of the space.

Today, I had a crack at trying to sort out the garage (where the majority of my machines are stored).  For a while it didn’t seem to be going particularly well – too much stuff, not enough storage, but slowly, slowly, things began to fall into place.

In the end, the 8m3 shed was filled to the brim – I would struggle to fit anything more in there at all.  And once I got that much stuff out of the garage, it was just sufficient to provide sufficient flexibility to move things around. As far as the decision to go with a shed rather than using a storage unit – I am storing pretty much all that I intended to, and now I’ll have a shed to show for it after the 2 months is up (the intended time I thought I’d need the unit). If it happens to be more than 2 months (every chance the way things always go), then I’ll be ahead on the cash stakes.  Money for jam.

So it is a shed of sorts – not able to handle large materials, but I can access each of the machines in there – the tablesaw, router table, jointer, thicknesser, both bandsaws, drill press, CNC (while I still have it), the lathes, and even the benchtop machines – there is an existing workbench along one wall in the garage.

Sure it is all a compromise, but hey – anything beats the last 5 months!  The thicknesser and tablesaw can only be run off the generator – no 15A power available otherwise.

IMG_4119 IMG_4121

Tomorrow I might even get to make some sawdust.  Exciting!

 

Shed Layout

Going to throw it out there – if you are interested in helping me design the shed layout, I’d be most interested in your ideas!

To start, these are the shed dimensions.  The location of the roller door is pretty much fixed (won’t fit anywhere else), but all other doors and window can be shifted at this stage.  There needs to be one door accessing the rear triangular area, and I do want a door accessing the back of the shed.

Finalised Shed Design

Finalised Shed Design

Inside, there are columns to compete with, which are fixed in place.  The slab design shows a pillar directly in the middle of the roller door, but I am doubting that is actually needed!  Pretty pointless if it is – if this shed was for a vehicle, you’d have to split the car (or boat) in two to get it inside!

Columns

Columns

The door in the 9’10” wall only needs to be in one of the two 9’10” walls, move as suitable!

I’ve been using the Grizzly Shed Designer website – if you know of something better, I’d be keen to hear!

This is one design I have come up with, but I’m sure it isn’t as good as it could be.

Shed Layout?

Shed Layout?

So some specifics.  The tablesaw is the TS10L (discontinued), and has a long wing on the right.  It needs in and outfeed, but also room to the lefthand side for long items (at least until I get a Kapex). There is a router table which is about 680mm wide, and 1000mm long.  Infeed and outfeed is across the shorter width, as the Incra LS Positioner extends down the length.

There is a workbench – 1500×800, and the Torque Workcentre 2500×800 (the lathe on top of the workbench represents the overhead arm).

A 15″ thicknesser, a 6″ longbed jointer, a drill press.

There are 2 bandsaws, one a 17″ Carbatec which is used for resawing, and a 14″ Jet for small items (no outfeed required).

A Triton spindle sander, and a disk sander/linisher.  There are three lathes showing.  One is the DVR XP, one is the Nova Comet II, and the third is a Jet Mini, but this one will be used to hold three buffing wheels, so is part of the sanding section.

As far as the rest, I’m not showing any timber storage as it will either be on the mezzanine, or stored elsewhere.  The dust extractor and air compressor will be in a nearby shed, and can either be located in the triangular section (top left), or at the back, or alongside the shed at the right – your choice.  I’m not showing any storage at the moment – either suggest what you will, or have a look at older photos of the workshop to see what I have been using in the past.

So that’s the general scope – questions to refine the issues welcome.  Hope someone can come up with a plan that really works!

 

The Dado Blade of the Router Bit World

The router table has always been particularly good for cutting a groove, particularly in smaller items (such as making boxes).  The orientation of the blade to the timber for one, the diameter of the blade (vs a tablesaw), the speed of the cutter, the accuracy in setup.

The one frustration I have found is having to accept the width of the groove is limited to the width of the cutter of the router bit, or having to take multiple passes.  Unlike a tablesaw, the concept of a dado blade is foreign to the router table.

Well until now that is.

Toolstoday.com have available a really interesting router bit indeed from Amana Tool.  It is an EZ Dial Slot Cutter, and unlike a tablesaw dado blade stack, this router bit does not have shims, or even need to be taken apart and reassembled.

EZ Dial Router Bit

EZ Dial Router Bit

Looking at the anatomy of the router bit, from the top-down.  The top threaded section is the range of adjustment of the router bit, and there are two types available – a 1/8″ – 1/4″, and a 1/4″ – 1/2″.  Next is the locking nut – once the width of the slot is set.  The knurled knob is the adjustment for the router bit, and is then locked in position with the locking nut.

The blade is next – it is a four-flute router bit, but because of the adjustment, each side of the trench is cut with two of the flutes.  As the knurled adjustment knob is turned, two of the flutes move with the knob, and the other two remain fixed.

A bearing then sits under the flutes – useful when following curves, and other times a router fence is not in use.  Just below that is a section with two flats – this is useful if the locking nut is too tight – a spanner can be fit on this section so it can be undone without having to risk damage to the router chuck or shaft lock.

Finally, the shaft is a finely finished, accurate 1/2″ shaft.  (An inaccurate shaft is either difficult to fit the router collet if too large, or at risk of slipping if too small).

Variable slots

Variable slots

I was working with the 1/8-1/4″ router bit, but the concept is the same.  In the above image, the two opposite flutes move, the other two are fixed.  That dial-in adjustment is remarkably liberating.  Being able to set the width of the resulting slot to accurately match the material that will fit in it (whether that be another piece of timber, a sheet of glass etc), and also easy to add an accurate amount of clearance if required.

The quality of the router bit is obvious, as is the finish that is achieved.

55500-cNot only can the width of the slot be set, but it can be adjusted with the router bit fixed in the router. (So long as you intend to remove more material – too hard to put material back!) Rather than trying to work out the range to move the router up and down again, a test cut or two, a dial-in of width, and your accuracy and flexibility of the table is increased dramatically.

Once you experience the convenience of a shim-less, dial in width of slot for a router bit, you’ll be wishing a tablesaw dado blade was as easy, as infinitely adjustable, and as accurate.

Available from Toolstoday.com

 

Link with the past

After reading my article on line shafts, Evan suggested I look at the following video on YouTube.

It is an excerpt from a 1981 documentary about a craftsman who is still using a water-powered (and line-shaft enabled) workshop from the 1840s.  It is 26 minutes long and does a pretty good job of documenting the creation of a project in this workshop.

The video starts with a bit of blacksmithing, which is interesting in its own right, but the majority of the video is about the creation of a large water trough for cattle, completed in a single day using techniques that are very similar to that a cooper would utilise to create a barrel. A very large barrel!

What I found fascinating, and really very invigorating and inspiring (used enough adjectives here?) is the machines in this workshop are practically no different from those in mine, and many others around the place.  We may utilise electricity rather than water power, but little else has changed.  We would be quite comfortable operating in a workshop of the 1840s, and in turn someone from that era would find ours very familiar as well.  Our links with our roots are not very long at all.

A tablesaw is still very recognisable as a tablesaw, as with the thicknesser, jointer, horizontal borer etc.  It seems the only really new technology in our workshops is the router, and even then it is quite possible the spindle moulder dates back far enough to be included in water powered workshops.  In 1925 they were still using flat-sided cutters, so that is something we can be grateful has improved over time! (Kickbacks would have been common, and incredibly violent).

So have a look at Ben Thresher’s mill, right out of the pages of history, and enjoy as I have, that we are still keeping these traditions alive in our own workshops.  The digital age of woodworking seems to be approaching, CNC, laser, 3D printing etc, so lets not allow our craft and skills to be lost in the way that digital photography has affected (what I call) chemical photography, and what computers and iTunes is slowly doing to music. (Had to end on a note of controversy!)

Stuffed it up!

So there I was, trying to work out the plans for the shed, and things were just not working as well as I expected, and I put it down to the fact the components I was working with on the Grizzly Planner were not to the same size (scaled) as I needed them to be.

But then I tried a major rearrangement, putting the tablesaw down the back of the proposed shed, and couldn’t get it to fit.  Shouldn’t I have a metre clearance?  So I checked my dimensions.  Then checked them again.  And I finally got it.  The shed was drawn completely the wrong size.  The problem with working in feet & inches, is I don’t know what 96″ looks like (or whatever).  It is not intuitive to me, having primarily worked in metric.

So I then redrew the shed to the right size, and then tried placing in the tools.  Everything looked completely wrong – all the tools have just too much room.  How can that be?  Checked.  Double checked.  I think it is right. WHOA!  Awesome!

shedlayout

This wasn’t a serious effort at tool layout – couldn’t get over how much room there was.  This fits all the tools, and still space for more that I hadn’t included in the initial planning from the previous shed.  And there is still the mezzanine 🙂

Some really interesting progress on the shed front – hope to have an update around the end of the week (or there abouts).

Groove is in the Heart(wood)

The dado blade (or dado set) can be a particularly accurate tool when it is understood correctly.  With a combination of spacers and shims, a dado (or groove) of very precise width and depth can be cut in a single pass.  Unlike a router bit producing a groove, the size of the stock to fit that groove does not have to match the router bit, nor do you have to make multiple passes to get to the required width, or depth.

The tablesaw is also much more suitable for processing large amounts of stock, and long lengths.

dado-1

Electroblu Dado Blade

The dado set I have been using recently is this one from Amana Tool (through Toolstoday.com)  It is an 8″ dado set, with a 5/8″ bore.  The bore accurately matches the arbor of my tablesaw, so I don’t have to try to juggle washers for each blade and spacer, and means the blade set will produce a more accurate and flat-bottomed groove.  It has most recently also been upgraded to have the environmentally-friendly Electroblu coating, which help mitigate heat buildup during the cut (which has an adverse affect on accuracy – the more heat, the more the blade can warp.  This then results in more runout and therefore a change to the effective width of the cut.)

Click here to see the blade at Toolstoday.com  Don’t worry that the blade is not blue – the photo has not been updated yet to include their latest coating that is now standard on their blades.

dado-2

Dado Stack Set

It is a particularly nice set, with four 1/8″ spacers and one 1/16″ spacer (or chippers), and a set of shims of various widths.  The outside blades (which must always be used for every cut) are dedicated left and right (as is normal for dado sets).  The blades are not ATB – they are either bevelled left, or right only (depending on which blade it is), with every 6th tooth being flat ground.  They each have two teeth missing – this allows a place for the chipper blade to rest, so that the carbide teeth can overlap without knocking into each other.  The flat ground teeth result in square corners at the bottom of the groove.  Many other dado sets leave a telltale triangle cutout, where the bevel cuts deeper than the chippers.

dado-3

Inner edge of outside blade

An interesting feature of the outside blades is a raised section on the inside, effectively increasing the thickness of the blade, and when not using any chippers or shims means the two outer blades can rest against each other, again without the carbide teeth impacting.

dado-4

Chipper Blades

This particular dado set has only 2 tooth chipper blades.  This may seem a disadvantage (the general principle is the more teeth a blade has, the finer the cut), but the chipper blades don’t impact the side of the cut, where smoothness really counts.  Chippers only remove the material in the middle of the groove, so they only touch the bottom of the cut, and with a combination of the quality of the carbide, the angle of the grind and these chippers leave a very smooth finish.  The other really important aspect is the chipper blades have to be exactly the same diameter as each other, and the outside blades.  This leaves a flat-bottomed groove.  If one is over (or under) sized, it leaves a step in the groove base.

dado-5

Dado Stack

As you stack the dado set, you stagger the individual blades so that the carbide teeth have no chance of pressing on each other.  Other than risking damage to the teeth, if they are pressing on each other, they will distort the effective width of the dado stack.  When using shims, you need to space them out between each of the blades used.  It is a good idea to put the thinnest ones nearest the arbor washer & nut.  That way it is easier to change the finest shims to fine tune the effective width of the stack.  When measuring the width of the blade stack, you cannot simply add up all the width of the components.  The amount of runout of the two outside blades (in particular) (and to a lesser degree, the runout of the chippers) needs to be added to the final width, as does the runout of the tablesaw itself.

This can be determined by trial and error.  Set up the stack for a certain width of cut (adding together the kerf of the outside blades, the chippers and spacers used).  Perform a cut, and measure the result.  This will give the actual width of the cut, and the difference between the two is the runout of the stack and tablesaw combined.

dado-6

Zero Clearance

Despite the fact I have a 10″ tablesaw, an 8″ dado blade set is more than enough.  There are a number of reasons for this: Unlike a normal blade, the dado set is only ever for cutting a groove (and more often than not, no more than 1″ deep).  There is therefore no need to incur the extra expense of a larger blade.  A dado set is already much heavier than a single blade, and can really push the limits of the saw motor just to get it up to speed, let alone maintain that speed during a cut.  A larger blade has significantly more bulk and mass, and can exceed your saw’s capacity to spin it up.  The benefit of this set, is those 2 tooth chippers have a lot less bulk than other chippers, so this also helps deal with the overall bulk of a dado set.  The other thing is that a dado blade really does not need anywhere near the depth of cut of a standard blade.  It is for cutting grooves, not cutting workpieces in twain.

As far as how this blade performs, it is excellent – but you’ll have to see the associated video (which I am working on) to see the result.  Needless to say, I had a precisely cut dado that absolutely matched the board I was inserting, so the friction fit was beautifully tight.

To get that precision, I took the typically supplied notes on the various combinations of blades, chippers and shims to achieve a standard set of widths, and threw them out the window.  Instead, I came up with a comprehensive set of every single combination possible, in order of increasing width, so I can exactly choose what combination to start with to match the board I am inserting into the resulting groove.  Instead of having about 24 combinations that were provided, my list is just over 3000 combinations.  And because I have it in Excel, it is easy for me to add in the runout of the blades and tablesaw to end up with even more precision.

Out of interest, I have attached the full list below (and below the smapshot of part of the table)

dado

Snapshot of a few rows of the table

Dado Set Combination pdf

The Dado set by Amana Tool, from Toolstoday.com is a worthy version, and well worth considering when looking for a dado set for your workshop.  When the video comes out, you will see just how precise a dado set can be!

Enter, the Router Table

Taking the first components off to the next stage of the process involves the router table, and the rail & stile plus raised panel bits.

Cutting the interior profile

After some test cuts, the router table was set up to run the rails and stiles through the first router bit.  I use MagSwitch featherboards to hold the timber against the router table fence. They are so easy to position, and hold fast to the cast iron top of my router table.  Make you think it fortunate my router table is cast iron, but it came about in the reverse order.  I made the router table out of cast iron so that I could use MagSwitches on it.

Woodpeckers Coping Sled

After changing to the complementary router bit, it was time to cut the end grain of the rails.  If you ever wonder how to remember which is which, think about rails being horizontal.  They certainly are for trains! The stile is the other one.

The Woodpeckers Coping Sled is awesome for this task.  It holds the rails perfectly, and perpendicular to the direction of travel.  If I had taken more care, I would have used a sacrificial backing.  Probably should have – hardwood tears out a bit too easily. I’ll make sure I do when cutting the doors for the sink unit.

I just checked – the coping sled is still available from Professional Woodworkers Supplies.  They now have a mini one as well, but given the full sized one is on special, I’d still go with that one (the one pictured above).  There is so much more with this one, it is worth the difference.

Sanding the panels

After removing the panels being glued up in the Frontline clamps, I used the Festool belt sander to do a final flattening (including removing any glue squeezeout).  The large sander weights 7kg, and when coupled with the sled means you can hold the handle, and, well, hang on – letting the tool do all the work.  The work is clamped up using brass dogs on the vice, and dogs in holes in the table.

Panel bit

Once sanded (not the final sand – more a sizing sand than a finishing one), it was back to the router table, this time with a raised panel bit.  I don’t have a raised panel bit with a cutter for the back yet, so have to adjust it manually. This is not the final pass, but an intermediate one to check fit.  Best to do the crossgrain first, then the longgrain.

Panel bit

This is a monster bit – pretty much at the limit that a router can (or rather should) drive.  The run at the slowest speed still gets a decent tip speed.

Test fit

A quick test fit showed I was close, but still needs another pass to get it there.  Looking good though.  Will look even better when I do the 3D routing into each panel!  Once that routing is done (next session), then I can glue the panels up.

Thicknessing undersized stock

One thing I have been surprised with so far, is the lack of waste.  I’d always try to use timber to maximise yield, but there is always waste.  So far I’d not have enough offcuts to fill a 10L bucket – the yield is exceptional.

Even these thin panels that were ripped off the 19-20mm thick boards.  They will be perfect for the back of the units.  I wanted to run them through the thicknesser, but it just doesn’t go thin enough.  To solve that problem, I clamped on a sled.  The boards would not feed initially, but with a quick rubdown with Sibergleit, the boards fed through smoothly and easily.  I wouldn’t do this with any timber, or to go too thin, but it will get you out of trouble.
So a good session.  Progress seems slow, but this is always the slow part of any project.  Once the items are cut, and some preliminary joinery done, it usually flies together.

 

Some good news and bad news.  The good news is that I am documenting sessions on video.  Bad news is I am not planning on releasing the video until the project is complete!

Goodnight, Sleep Tight

It took pretty much two months to the day to build the cot, given that we were snatching half a day here, half a day there.

Friday evening was the final push, and we just kept at it until all the final issues were solved (making the side rise and fall, how to assemble it, etc etc).  Took us through to about 12:30 at night, but we got it done.  It isn’t sanded and oiled as yet (that’s a job for the expectant father!) and the final bit of time he has before his world becomes somewhat busier!  Looking back at the earliest posts, and we were a bit naive in our predictions on just how long/how many sessions it would take.  Just Friday night was a bit of a marathon – not that it wasn’t a good time, just that tasks always take longer than planned!  3 sessions?  More like 5 or 6 (really lost track!)

But first I’ll back up a bit, for a quick summary / overview, and then with more detail from the assembly of the ends.  As mentioned earlier, the focus was very much on the planning and construction of the cot, rather than documenting the process.

Session one was getting the bed itself made – the surround and base for the mattress.  Everything in the project was made from Tasmanian Oak, and machined down (and out of) large slabs such as seen here:

Tassie Oak Slabs

It was glued up in a later session (clamped up with Frontline clamps), with a rail under the bed supporting the MDF bed base.  This was also drilled with a series of large holes for ventilation.

Bed section clamped up

Session two involved making the slats (and some testing to get the distances between slats right, so it was even over the cot length.  Again, the actual glueup happened in a later session.

Making the slats

All the rail components

We also resawed, dressed and glued up the pine end panels in this session.

End panels

A month then passed while we both had other distractions.

Session three commenced with a glueup of the various sections.  The bed (as seen above), and the rails.

Rails glued up

Each end panel had the 3D routing done, and the rails for the cot ends made.

Session four was time for the legs to be made.  These were each notched so the bed rested firmly on them, transferring the load directly down the legs rather than through a mechanical joint.  A T Track was routed into the two front legs, using a slot-cutting router bit.

By the end of the day (including some extra work done afterwards), the ends were done.  This is where we pick up the story.

After producing the inserts for the ends (10mm thick pine boards, joined to produce a full panel), routing the 3D pattern into each end, it was time to cut them to their final dimension.  The question is, how to use the tablesaw to cut boards with uneven ends.

There are a whole host of methods promoted, sleds that clamp down on the piece, extension tables either built into the tablesaw (or added on, such as the Triton Extension Table) etc.  Actually, speaking of which, the Triton extension table would have been great for this project, if I had somewhere to actually put it!  This project really demonstrated how tight the shed has become. Assembly, and even moving around the larger components was a real problem.  Could really do with another shed, either to spread the overall load, or to use more as a project area / workbench area rather than the actual timber shaping/component construction.

Back to cutting the panel.  The solution I used was to attach a temporary straight-edge to the board, and it ran along the tablesaw fence, so the opposite side could be cut parallel.

Using a straight edge

In this case it was simply a piece of MDF and a couple of screws into what would become waste.  FWIW, I hadn’t set up the saw at this point, changing the blade to a crosscut blade and then replacing the splitter and guard.

The top and bottom rails were dominoed onto these boards (biscuits could have been used), glued and clamped, then the whole assembly glued and clamped to the legs to form the cot ends.  This was done over a number of days (availability of clamps, and time), ready for the final session.

Assembling the panels

Cot ends

(Yes, I know you have just seen this image – as mentioned, I was concentrating a lot more on the build than on documenting the process! Sorry 🙂 )

Session five – our late night marathon to finish.

A bed takes shape!

There was a lot of bolting and unbolting of the ends as we finished off the various components and steps, and the beauty of the cot is it can be flat-packed when no longer needed.  Just with the ends bolted on, the rigidity was obvious.  An extra stringer between the ends would be ideal, but with a combination of bolts and the corners being recessed into the legs is enough.

The back rail was added, again bolted to the bed itself, and with dominos into the legs.  These were left unglued – more than enough strength left just like that.  In time if it proved necessary, a small hole and a piece of dowel inserted through the leg and the domino as a pin would lock them together.

The final job was getting the front rail so it was functional.

At first it was pretty tight – a roof screw running up and down the track.  With quite of bit of trial and error, sanding the track a bit, adding some plastic tube to cover up the exposed screw threads, adjusting the height of the screws so they run cleanly in the track, and finally lubricating the track with Ubeaut Traditional Wax.  Whatever it was (and more likely a combination of them all), it went from being a bit average, to running as well as any commercial solution.  With spring-loaded catches at the top edge that automatically engage when the rail is lifted, the cot was finished (at least as far as my involvement).  Still needs a bit of sanding and oiling, but other than that, a really successful, enjoyable build.

Finished!

Side dropped to lower position

The final view

So the cot was done – getting it out of the shed was a mission – we took it out assembled, and it was a rather tight fit (leveraging it around the bandsaw).

Getting it into the covered trailer was also interesting.  Another 5mm in leg length (perhaps even less), and it would not have fitted.  Also in length – it was like absolutely built with the trailer dimensions in mind!

So that’s it – another successful project conclusion.  There is always that air of relief, satisfaction, remorse, disbelief when a project is over.  Fortunately, there is always more timber out there, and so many more projects to build!

Battle of the TS saws

Back around March 2008, I posted quite a lot of information on this site as I went through the process of choosing a cabinet-type tablesaw.

Now four years on (believe it or not!!), and prompted by a recent query (given my tablesaw, the TS10L has been off the market for around 3 years) I can look back at the decision I made, and whether the apparent successor would have been a contender.

Tablesaw comparison - what floats your boat?

Saw Soup

This is also interesting as news filters through that may have gotten themselves as national importers/distributors of Jet power tools. Still a rumour at this stage though. Wonder if it will impact on Powermatic as well?

***Update: it is confirmed (information received independently from 3 different sources) that Carbatec have become the importers/distributors of Jet.  In doing so, it is likely that competing saws also made in Taiwan (such as the TSCE-10L) will no longer be available once current stocks are exhausted***

So 4 years on. The TS10L is still a great saw, and I still have no issues or regrets over the decision. No weaknesses or issues have come to light in that time, other than a couple of very minor items I resolved very early on – the antikickback pawls that were spring-loaded and causing damage to timber passing underneath (since removed), and the insert having to be lifted to get access to the guard/splitter quick release (solved by creating a new insert that can be removed from around the splitter).
So what features really make this saw, that are worth ensuring are included in other models?

Well many, but there are a number that do come to mind. The arbor lock for blade changing. Quick release for the splitter/guard. That the splitter/guard rises and falls with the blade. The left-tilting blade. The Biesemeyer-style fence. The large, heavy, flat tabletop that is significant on both sides of the blade and having two miter slots – one either side of the blade. The overall weight, and heavy manufacturing of the machine.

TS10L ….. TSC10HB Specification TSCE-10L
254mm 250mm Blade Size 254mm
16mm max*** 15mm max Dado Capacity 15mm max
Left Right Tilt Direction Left
3HP 15A 240V 3HP 15A 240V Motor 3HP 15A 240V
Induction Induction Motor Type Induction
2850 RPM Motor Speed 2850 RPM
4000RPM Blade Speed 4300 RPM
Triple Belt Drive Type Poly v-belt
5/8″ 5/8″ Arbor Diameter 5/8″
75mm 77mm Max Cut at 90° 75mm
69mm 58mm Max Cut at 45° 55mm
255/695mm Max Rip L/R 300/762mm
1072x739mm 1015x685mm Table Size WxD 1118x739mm
860mm Table Height 864mm
305mm Blade to Table Front 305mm
150mm Blade to Table Rear
Biesemeyer Style HD Al Lever Action? Fence Type Biesemeyer Style
Clear, Lifting Clear, Lifting Blade Guard Clear, Lifting
Quick Release, Floating Fixed, Anti-kickback Riving Knife Fixed Height *
Magnetic Contactor Magnetic Contactor Switch Type Magnetic Contactor
1×4″ 1×4″ Dust Port 1×4″
Cabinet Cabinet Stand Cabinet
1480x1100x980mm Footprint 1650x1100x1100mm **
220kg 190kg Weight 216kg **

* Error on website – riving knife does rise and fall

** Contradiction between website and latest catalogue

*** I have fitted more – up to 20mm from memory

So what does all this mean? Basically that it is very hard to tell machines apart on spec.

I’d be asking myself (and looking at floor models to see) where the additional 25+kg came from? Some is in the larger top, but the TS10L is not the largest of the three, but is the heaviest. Heavier mechanism (which is a good thing).

Left vs right tilt. I’ve heard justifications for both. I believe left tilt is a safer machine, so that is why I went that way. So did SawStop, and Powermatic. Think that is a pretty clear message.

Riving knives (and guards) are vital safety features. You cannot use them every cut, so one that is quick release is highly desirable. It has to work for you, not against you.

If I was in the market for a tablesaw again, I would first look at SawStop (for the quality of the saw, not just the safety feature), and Powermatic, and work my way down until I got to a model I could afford, rather than work my way up, trying to justify each price increase. In hindsight, I do not have any regrets spending the extra amount I did.

When looking at the machines in person, I would be looking at the strength of the mechanisms, smoothness of operation, quality of the motor (size is a bit of an indicator here – they are both the same power, but is one a lot smaller and therefore less robust internal construction / cheaper manufacture), quality of the fence and how easy it is to adjust/set it accurately to a measurement.

One thing that isn’t shown in the specs, is the accuracy to which the machine is made.  The TS10L has an impressive lack of runout in the arbor, both axially and radially.  This affects the accuracy of every single cut.  Before buying any machine, I would want to know / physically test the runout using a dial gauge.  Two similar looking machines with a large difference in tag price could boil down to one being superbly accurate, and the other being unfit for your purpose.

I don’t know the specs on the individual machines so this is a general comment.  When I did my “Battle of the Blades” soon after getting my machine, I tested the runout and was very impressed – it could have made the difference between every cut being rougher than need be, so is definitely worth considering.  http://stusshed.com/reviews/blade-review/

There is also a strong intangible element here – do you like the saw?  Will you regret not going for the larger/more expensive model in 2, 5, 10 years?  These are long term relationships you forge with large workshop machines – they should last a lifetime, and are not short term affairs as you get with cheap machines and disposable tools.  For the sake of a few dollars (and I do acknowledge the cost difference is significant) will you remain happy with the decision?

This article is definitely not a comprehensive look at current tablesaws, it is an attempt to address a specific question. If looking, there are other manufacturers and suppliers that you would have to carefully consider while making that crucial decision.

%d bloggers like this: