The Promise of Future Projects from the Ghosts of the Past

Once, I’m sure, it would have been regarded as a stunning architectural feature of the Menzies Building, but the original timber ceiling is no longer the flavour of the month and has been replaced with a modern suspended one.

I had a scan of my collection of digital photos taken over the years, and found one that at least gives a small taste of what the ceilings used to be.

timberroof-1Rather than see that timber wasted or worse (such as landfill or burnt), I have been fortunate enough to have a good portion dropped off at my place (yeah, just in time for me to then have to relocate it to the new house!)

While part of the ceiling, the boards are secured together in groups of 3 or 6, with a board nailed across them (bet that was some apprentice’s job!) The majority are 90 x 30mm, and 1.8m in length.


To take them apart, I initially tried a hammer, but decided there was a much better way – the Worx Pro Jawhorse.

By clamping the crossbrace in the jaws, it only takes a little encouragement (and gravity) to neatly separate the two, leaving lengths of very straight, very dry timber.


Just goes to show how stable the Jawhorse is!  And a tonne of clamping force to boot.  From there, the boards got stacked onto a pallet.  I haven’t measured it, but it’d be close to 2 m3.

I used a bit for toy kitchen for my daughter’s Christmas, and there are a fair few projects to come out of this lot.  Can’t wait!  So awesome (and inspiring) having a good collection of timber!


Sinking Deeper

Once the initial parts for the sink were glued up (the large U shape sections), it was time to make the actual components.  Ideally, I wouldn’t have had to take the previous step, but I am working with a limited stock size, partly as a bit of an exercise, partly because I have the timber, and don’t feel like buying something else.  The redgum is being salvaged from the ugliest, oldest sleeper you would have seen in a long time.  Always surprising just how much good timber is hidden behind a rough façade.


Creating the sink template

To cut the individual sections out, I created a template from MDF.  It is easy to draw up and shape to the required profile.


Template attached

In this case, I didn’t have to worry about screw holes, so it was easier and less problematic to use screws (Kreg square drive).  You may wonder about the amount of timber wasted here inside the sink.  It won’t be going to waste, as I intend to use this again in the same way to produce some other (as yet undecided) kitchen appliances.


Bandsawing around the template

To remove the bulk of the material, the bandsaw works exceptionally well.  Cutting near to the template reduces the load on the pattern copying router bit.


Routing to shape

Over to the router table, and with a pattern bit (a straight cutter with a bearing on top), each piece of the sink is routed to shape.  (The photo above has the piece upside down)


Glued and clamped

Next, each piece is glued and clamped together to form the body of the sink.  The ends have also been cut using the same template, but obviously only the outside is cut and routed.


Spindle Sanding

The spindle sander is next, and is the perfect tool for this job.  It may not get the full depth, but flipping the workpiece over a few times keeps things pretty even.


Fine sanding

The size of the sink just allowed me to get the ETS150 inside, but it isn’t ideal for sanding around corners…..except I have a soft sanding pad (from Ideal Tools).  This has hooks on one side, and loops on the other, so it acts as a spacer between the original sanding pad and the sandpaper.  With this, it is really easy to sand all sorts of concave and convex profiles.


Soft sanding pad

This is the soft sanding pad – a very useful addition for the ROS.

***Update: it is called an interface pad, and can be found here


Attaching the sides

With the inside done, the sides of the sink can be attached.  This (and the next image) were actually photographed before the glueup, but it gives you the idea.


Laminated sink

So that is how I make the laminated sink, still ensuring that the entire project can be made from timber.  Not sure if I will be able to maintain that ideal for the entire project, but I am still working towards it.  Very pleased I used contrasting timber this time – might as well make a feature of the laminations!

It’s a Crayon Jim, but not as you know it

Just what do you think of, if I suggested we were going to discuss crayons?

I have a (almost) 6 year old, so you can tell you where my thought processes are at. It has a lot more to do with colouring in, than working with wood!  When it comes down to it, Crayolas don’t cut the mustard when you have some serious work to do.

So it is fortuitous that there are crayons for the workshop.  Still, I can sense your incredulous look. So yes, I am being serious – you can buy crayons for the workshop, and they have real benefit over other marking methods.

Lumber Crayons

Lumber Crayons

They are the Pro-Ex Contractor Grade Lumber Crayons, and they are specifically designed for work.  They are a much harder crayon than what you are used to using – other than the name, they have little in common with the crayons in a child’s pencil case.  They are clay-based, not wax based, which makes all the difference where it comes to how they function in a serious application.

Obviously designed to write on timber (being Lumber Crayons), they can also write on steel, concrete and stone, dry, wet or frozen (not that much timber is frozen down under!)  They come from a company that specialises in industrial markers for the metal and woodworking industries

Back when I worked for a truck-fitting company, designs for a construction were laid out on the floor in full scale using chalk.  The lines would quickly blur, or simply disappear.  These would have been a real asset in that situation.

I’ve already integrated these lumber crayons into my standard practices, and it was quite surprising just how quickly I found they were the better solution for marking up the timber.  They obviously don’t replace the pencil or marking knife for measuring, but pretty much every other situation, they are taking over!

Timber gets marked where there are defects, the different timbers are identified (where it can become unclear), and offcuts get labeled as well.  Workshops have used chalk for this in the past, and again this can wear off, or the marks fade over time.  The lumber crayons remain a clear mark on the timber.



I have used them to clearly mark where I have found metal in reclaimed boards (which is particularly useful!) and on the thicknesser. By quickly scribbling on the surface of the board, it is a useful visual indication when the board has become flat across the entire surface (sometimes this is hard to distinguish).

Having the three colours is very useful as well – depending on the board, you can choose which will show up the best.  The yellow and black are the most visual (dark on a light background, and vise versa).

There is also a crayon-holder, which affords the crayon more protection from being dropped and a leather strap so it can be hung conveniently nearby.

Crayon Holder

Crayon Holder

These are available from Kaufmann Mercantile, and are made in the USA.

Send in the crayons

Invisible Progress

More progress made today on the kitchen, but not much to actually show for it. A lot of the day was spent doing the same sort of activities as the past few: machining timber to size, joining it up with glue (and Dominos as a whole).

I am still trying to maximise the yield I get from the timber, keeping any offcut of decent width, or length, and surprisingly so much of it is able to be used. I had a whole stack of offcuts, all thicknessed up just in case, and saw they were the perfect size and thickness for the base of the units. What is more, the pile was exactly the right number, and they had already been cut to length, which was exactly the length I needed. I’m sure it isn’t coincidental (being cut from stock that was the right size), but it is cool when it happens in any case.

The tops of the unit are done, excluding the machining (cutting a sink opening, and machining the elements into the stove surface).

Speaking of sinks, I have started preparing the material for the wooden sink.


Sink Laminations

This time I am doing it how I always planned, and envisaged it to be – laminated with contrasting timbers. The light timber is the Tassie Oak, the red timber is Australian Red Gum.


Rudimentary Form

To create the final sink, each lamination needs to be machined before glueup. Way too hard afterwards! So a whole bunch of clamps later (I’m rapidly running out), I managed to get it all glued up, ready for the net stage.

So a day where progress seemed slow to non existent, but it will prove itself during assembly, where all these stacks of dressed timber about the place will transform into the various parts of the project.

Enter, the Router Table

Taking the first components off to the next stage of the process involves the router table, and the rail & stile plus raised panel bits.

Cutting the interior profile

After some test cuts, the router table was set up to run the rails and stiles through the first router bit.  I use MagSwitch featherboards to hold the timber against the router table fence. They are so easy to position, and hold fast to the cast iron top of my router table.  Make you think it fortunate my router table is cast iron, but it came about in the reverse order.  I made the router table out of cast iron so that I could use MagSwitches on it.

Woodpeckers Coping Sled

After changing to the complementary router bit, it was time to cut the end grain of the rails.  If you ever wonder how to remember which is which, think about rails being horizontal.  They certainly are for trains! The stile is the other one.

The Woodpeckers Coping Sled is awesome for this task.  It holds the rails perfectly, and perpendicular to the direction of travel.  If I had taken more care, I would have used a sacrificial backing.  Probably should have – hardwood tears out a bit too easily. I’ll make sure I do when cutting the doors for the sink unit.

I just checked – the coping sled is still available from Professional Woodworkers Supplies.  They now have a mini one as well, but given the full sized one is on special, I’d still go with that one (the one pictured above).  There is so much more with this one, it is worth the difference.

Sanding the panels

After removing the panels being glued up in the Frontline clamps, I used the Festool belt sander to do a final flattening (including removing any glue squeezeout).  The large sander weights 7kg, and when coupled with the sled means you can hold the handle, and, well, hang on – letting the tool do all the work.  The work is clamped up using brass dogs on the vice, and dogs in holes in the table.

Panel bit

Once sanded (not the final sand – more a sizing sand than a finishing one), it was back to the router table, this time with a raised panel bit.  I don’t have a raised panel bit with a cutter for the back yet, so have to adjust it manually. This is not the final pass, but an intermediate one to check fit.  Best to do the crossgrain first, then the longgrain.

Panel bit

This is a monster bit – pretty much at the limit that a router can (or rather should) drive.  The run at the slowest speed still gets a decent tip speed.

Test fit

A quick test fit showed I was close, but still needs another pass to get it there.  Looking good though.  Will look even better when I do the 3D routing into each panel!  Once that routing is done (next session), then I can glue the panels up.

Thicknessing undersized stock

One thing I have been surprised with so far, is the lack of waste.  I’d always try to use timber to maximise yield, but there is always waste.  So far I’d not have enough offcuts to fill a 10L bucket – the yield is exceptional.

Even these thin panels that were ripped off the 19-20mm thick boards.  They will be perfect for the back of the units.  I wanted to run them through the thicknesser, but it just doesn’t go thin enough.  To solve that problem, I clamped on a sled.  The boards would not feed initially, but with a quick rubdown with Sibergleit, the boards fed through smoothly and easily.  I wouldn’t do this with any timber, or to go too thin, but it will get you out of trouble.
So a good session.  Progress seems slow, but this is always the slow part of any project.  Once the items are cut, and some preliminary joinery done, it usually flies together.


Some good news and bad news.  The good news is that I am documenting sessions on video.  Bad news is I am not planning on releasing the video until the project is complete!

Lignum Vitae

As a timber, Lignum Vitae will always remind me of my days at sea.  It was not a timber you actually saw during the normal course of events, but it was integral with the propulsion system, and that it was the material of choice always fascinated me.

The ships in question, at least that I was dealing with were the Leander Class frigates, but many of the same vintage (WWII – 1970s) used Lignum Vitae (LV) in the same role.  It is a very dense timber, so much so that it does not float, (weighing around 1.3 times that of water (less that of sea water!)), and is a very oily timber, so is self lubricating.  Both the density and self-lubricating properties made it ideal for the role, and being an ironwood, is extremely hard-wearing.

On some ships, LV was used in other bearings in the propulsion system, and in the stern tube (which stop water getting into the ship around the ship’s shaft), but not here (as far as I know!).  On the Leander frigate, it is used in the A frame – at the very back of the ship.  The A frame supports the end of the shaft, just near the props.  They remain immersed in sea water, and have to carry and support the weight of the shaft and prop, which is not the nicest of roles for any material, and yet LV got on, and got the job done. Unfortunately, the popularity of the timber for ship propulsion systems, and other large bearings has significantly depleted stock around the world, but hopefully, given other materials have since become more popular, overall demand has decreased and LV trees have a chance to come back.

To give you a sense of scale, here I am in the drydock beneath HMNZS WAIKATO (another Leander frigate – not the one pictured in the first photo – it is hard to get a photo of one’s own ship while at sea!)

So that’s a little story behind the scenes about Lignum Vitae, and why it always has particular meaning to me.  Sadly (and something I do want to recitfy), I’ve never actually owned a piece….yet.

Finishing off the boards

From the thicknesser, the final step in producing the components is the tablesaw.

With the side against the table (and now either side can be used as the reference, both being flat, parallel to each other, and at 90 degrees to the machined edge), and the planed edge runs against the fence.

The boards are then cut to width.

Ripping the board

Next, the fence is moved out of the way and the mitre fence added to the mitre slot.

Mine is the Incra, and like many, has a T end to the bar.  Rather than fluff around trying to insert the end at the near end, place the bar into the slot – it will ride up because of the T end.  Slide it forward past the end of the table, so the T slot clears the end, then drag it back.  So much easier than the other!

Crosscutting the ends

With the Incra Mitre 1000SE and Shop Stop, it is very easy to both dock the ends, and cut the boards to an exact, repeatable length.

First crosscut one edge, just enough to remove any checking, then flip the board over to dock to length.

Box sides

The final, nicely figured box sides.  Each is exactly the same thickness, the same width, the same length as its matching side, all ready for whatever joinery method is going to be chosen.

The extra, significant satisfaction that these boards have been formed, hewn from the trunk of a tree in your own workshop.

%d bloggers like this: