When you buy a new (major) tool, do you trust that it is assembled as accurately as it could possibly be, or would you rather be able to check it for yourself, and potentially fine tune it to the highest degree of accuracy?
To do so however requires more than just a square and a good eye. An alignment kit, and particularly one that incorporates a dial gauge (to measure deflection) is pretty much mandatory.
This kit from Carbatec costs $A169, and I’d suggest would be something you would factor into the price of a major purchase (as much as you would buy good blades for a tablesaw).
There seems little point having an expensive, accurate tool such as a tablesaw if it is not set up properly. There are a few of these types of tools on the market, and I haven’t as yet been able to do a comparison of them, but this kit specifically left me feeling very confident that my saw is now finely tuned and ready for action.

The kit comes with a number of parts (although one is missing from the photo), but there is one thing that is notably missing from the kit when you buy it – an instruction manual. I ended up heading to the website listed on the box, and found some instructions there, although they were not in a particularly good state. Definitely not in a format that could be printed easily, or written particularly well. They were sufficient for me to follow through the steps required to align the tablesaw. For what is meant to be a quality kit (and in use it seems to be), the omission of an instruction manual seems a bit unusual.
Putting that aside however, let’s look at the kit itself. It seems to be manufactured to a reasonable level of quality, but doesn’t go out of its way to ensure absolute precision angles (such as the support arm for the dial gauge (the very holey thing) to the mitre bar (the one with the two knobs). The focus of the kit seems to be primarily (and simply) to position the dial gauge. Other kits place a great deal of emphasis on the precision of each component, so you wonder if they are over-engineered, or this kit not enough. Again, let me go back to an earlier comment – I am quite confident that my saw is well aligned, so perhaps the relentless precision isn’t necessary. It might be important if you need to actually quote exact figures for the calibration, such as if you involved in calibrating machines for sale and having to quote their accuracy, (accurate to 1/1000th of an inch (all these kits seem to be imperial)), but when aligning the saw for ourselves, we only need relative accuracy.
The kit is not only used for tablesaws, but is useful for the other shop items – bandsaw, planer (setting blades, setting infeed table height etc), drill press etc (for example, there is a rod that fits the chuck of the drill press so you can do some of the runout tests by manually rotating the chuck with the tool fitted).

The mitre bar has a couple of interesting grub screws to ensure there is no slack or slop in the bar. The end of the grub screws has spring-loaded ballbearings (yeah, I know that’s not the exact term), so they push on the far side of the mitre slot, keeping the bar snug. The support arm screws into that, and the dial gauge is connected on the end. In this case, the runout of the arbor is being checked. On my TS, runout was pretty much undetectable – in the region of 1 – 2/10000th of an inch


The rest of the tablesaw alignment is carried out with the Aligner set up as seen here, with the dial gauge touching the saw as close to the horizontal centre line of the blade as possible. The blade is retained on the saw with a clever system that I haven’t seen on other aligners. This unique method means that not only arbor runout can be checked, but also arbor flange squareness and blade runout. Once these are all checked, you are then in a position to check the actual table to blade (and therefore arbor) alignment.
My tablesaw showed a resulting runout caused by arbor flange squareness of 3 – 4/1000th inch. I probably would have preferred this to be a bit less than this, but it is below the 4-5/1000th that the online document mentions as approaching a point of concern.
The blades (and I checked a couple) had quite a significant amount of runout – I was surprised. Of course, if I wanted I could ensure that the blade runout was out of alignment with the arbor flange runout, effectively cancelling both out. What I might do with a bit more time is go through the process of marking the flange, and each blade so I can position the blade each time it is installed for optimum alignment.
Finally, by choosing a specific saw tooth, I zeroed the dial gauge when it was touching the front of the blade, then moved it to the rear of the blade. I then rotated the blade so the same tooth was at the rear and rechecked the deflection. With subtle touches with a rubber mallet I was able to get the tabletop positioned so there was no discernible deflection between the front and rear positions. (However, it took a bit longer than expected as I was trying to follow the instructions closely, until I realised they were erroneous). Once there was no deflection, I tightened down the bolts holding the table, resulting in a tablesaw ready for some precision work
Like this:
Like Loading...
Filed under: Uncategorized | Tagged: Cabinet Saw, Calibration, Carbatec, Jigs, New Tools, Tablesaw, TS10L | 3 Comments »